Loss of A-type lamins and genomic instability.

نویسندگان

  • Ignacio Gonzalez-Suarez
  • Abena B Redwood
  • Susana Gonzalo
چکیده

Research performed in the last few years has revealed important roles for the spatial and temporal organization of the genome on genome function and integrity. A challenge in the field is to determine the molecular mechanisms involved in the organization of genome function. A-type lamins, key structural components of the nucleus, have been implicated in the maintenance of nuclear architecture and chromatin structure. Interestingly, alterations of A-type lamins lead to defects in DNA replication and repair as well as gene transcription and silencing. Elucidating the functions of these proteins is a topical subject since alterations of A-type lamins are associated with a variety of human diseases, ranging from muscular dystrophies and premature aging syndromes to cancer. Here, we discuss novels roles for A-type lamins in the maintenance of telomere structure, length and function as well as in the stabilization of a key DNA damage response factor. These studies support the notion that increased genomic instability due to defects in telomere biology and DNA repair contribute to the pathogenesis of lamin-related diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dual role for A-type lamins in DNA double-strand break repair.

A-type lamins are emerging as regulators of nuclear organization and function. Changes in their expression are associated with cancer and mutations are linked to degenerative diseases -laminopathies-. Although a correlation exists between alterations in lamins and genomic instability, the molecular mechanisms remain largely unknown. We previously found that loss of A-type lamins leads to degrad...

متن کامل

Nurturing the genome: A-type lamins preserve genomic stability.

A-type lamins provide a scaffold for tethering chromatin and protein complexes regulating nuclear structure and function. Interest in lamins increased after mutations in the LMNA gene were found to be associated with a variety of human disorders termed laminopathies. These include muscular dystrophy, cardiomyopathy, lipodystrophy, peripheral neuropathy and premature aging syndromes such as prog...

متن کامل

Novel roles for A-type lamins in telomere biology and the DNA damage response pathway.

A-type lamins are intermediate filament proteins that provide a scaffold for protein complexes regulating nuclear structure and function. Mutations in the LMNA gene are linked to a variety of degenerative disorders termed laminopathies, whereas changes in the expression of lamins are associated with tumourigenesis. The molecular pathways affected by alterations of A-type lamins and how they con...

متن کامل

Regulating the levels of key factors in cell cycle and DNA repair: new pathways revealed by lamins.

Spatial and temporal organization of the genome represents an additional step in the regulation of nuclear functions. The nuclear lamina, a polymeric meshwork formed by lamins (A/C and B type) and lamin-associated proteins, plays a key role in the maintenance of genome localization, structure and function. Specifically, mutations in the LMNA gene encoding lamins A/C or changes in its expression...

متن کامل

A new pathway that regulates 53BP1 stability implicates cathepsin L and vitamin D in DNA repair.

Genomic instability due to telomere dysfunction and defective repair of DNA double-strand breaks (DSBs) is an underlying cause of ageing-related diseases. 53BP1 is a key factor in DNA DSBs repair and its deficiency is associated with genomic instability and cancer progression. Here, we uncover a novel pathway regulating the stability of 53BP1. We demonstrate an unprecedented role for the cystei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell cycle

دوره 8 23  شماره 

صفحات  -

تاریخ انتشار 2009